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Wood is one of the few engineering materials for which design codes specify that the 
applied stress be contingent on the duration of the load. This is in recognition of the 
fact that the strength of wood appears to degrade with time when under stress. This 
paper describes a set of experiments in which the kinetics of wood fracture are examined. 
It is shown that the present results and those of earlier workers can be fully explained 
by a relatively simple model and mathematical analysis, based on fracture mechanics. 
According to these results, the delayed failure of wood is caused by subcritical crack 
growth. The model helps to reveal what must be done to incorporate the duration-of- 
load effect into timber design in a probabalistic manner. 

1. Introduction 
The fracture strength of many engineering materials 
depends upon how rapidly the stress is applied. 
This is particularly true of brittle materials like 
glass and some plastics. It is also true of wood. 

Explanations for the phenomenon fall into two 
categories, those based on fracture mechanics 
[1, 2] and those invoking a structural damage 
mechanism [3, 4]. Since fracture mechanics makes 
no assumptions about mechanisms except to say 
that failure is by the extension of cracks, the two 
categories of explanations are not necessarily 
incompatible. This paper presents an explanation 
for the rate-of-loading effect in Douglas Fir Wood, 
based on the kinetics of subcritical crack growth. 
A subcritical crack is one that is too small to cause 
failure at the current stress. If, however, it is able 
to grow in response to the stress, the kinetics of its 
growth will dictate the endurance of the cracked 
component. Furthermore, it is sufficient, for pur- 
poses of  failure prediction, to know only the 
kinetics of crack growth; the mechanism need not 
be understood. 
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The rate-of-loading effect is important pri- 
marily because it is an easily measured surrogate 
for delayed failure which is known in the wood 
literature as the duration-of-load effect. This 
effect is of great engineering importance, because 
it sets a limit on the allowable stresses in struc- 
tures, based on the expected time under load. 
Thus, a timber structure that is expected to bear 
its loads for 10 years is allowed to have only 93% 
of the stress permitted in a structure designed for 
a life of 1 year [5]. 

Although there is ample evidence that a rate- 
of-loading effect exists in small clear wood speci- 
mens, Spencer [6] has recently shown that the 
effect seems to disappear in the weaker members 
of a set of dimension-lumber specimens. At the 
95th percentile of breaking strength in Spencer's 
tests, the strength was about 40% higher for very 
fast loading rates than it was for very slow rates. 
However, at the 5th percentile, the strength appears 
to be independent of the loading rate. Since the 
strength at the 5th percentile is used as a design 
criterion in building codes, it would appear that 
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the rate-of-loading effect and its counterpart, the 
duration-of-load effect, should not be used for 
dimension lumber. However, this paper is addressed 
primarily to the understanding of the phenomena 
that give rise to the rate-of-loading effect, rather 
than to the question of proper design strategies. 

In two previous papers [1, 2] it was shown 
that, for cracks running parallel to the grain in 
Douglas Fir, the rate-of-loading effect could be 
explained in terms of subcritical crack growth. 
This involved the independent measurement of 
crack velocity, V, versus crack driving force, K, 
and the rate-of-loading effect. An analysis of the 
rate-of-loading effect based on fracture mechanics 
yielded a value for the slope of the V - K  plot (65), 
which was in close agreement with the slope that 
was experimentally measured (62). However, tim- 
ber structural members are not normally loaded 
in tension perpendicular to the grain and the pre- 
sent experiments extend the earlier results to 
the practical case of tension parallel to the grain. 

The fracture mechanics approach to the rate- 
of-loading effect in brittle materials has been 
developed by Evans [7] and by Ritter and She> 
burne [8, 9]. It is based upon the Griffith-Irwin 
equation describing strength, S, in terms of crack 
size, a, and an intrinsic material property called 
fracture toughness, K c. It also utilizes an empirical 
relationship that describes crack kinetics: 

S = K f f Y x / a  (1) 
da 

- -  = V = A K ~  (2) 
dt 

where Y, A and N are constants. In effect, failure 
by subcritical crack growth involves the gradual 
extension of a crack in accordance with Equation 
2 until it reaches a critical value defined by Equa- 
tion 1. 

Using a more general form of Equation 1, i.e. 

K = Y a 4 a  (3) 

where a is simply the applied stress and K is the 
applied stress intensity (K <Ke) ,  and combining 
Equation 3 with Equation 2 gives 

da - -  = A yN aN a N/2 . (4) 
dt 

Substituting the identity: 

do~6 = at (5) 

leads to the integration 

fai af a da -N/2 = ( A y N / o ) f  oNdo (6) 
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and 

[a~.(N_212)__ (l~(N~2/2) ] _ A yN ~ +1 
(N- -2 )  (N +  1) 

(7) 
where the subscripts i and f are used to indicate 
the initial condition before testing, and the final 
condition on fracture. It is usually more convenient 
to work with the strength than the crack length 
and so, inserting Equation 1 into Equation 7, and 
noting that Sf = of, gives: 

S u§ = 26K2e-N(N + 1)/A y2  ( X - -  2) 

'-2 -2) (8) 
letting 

B--2K2e-N(N+ 1 ) / A Y 2 ( N - - 2 )  (9) 

leads to 

S N + '  +BOS~ r-2 = BOS~ -2 . (10) 

Thus, if the final strength of a specimen is 
measured in a fracture test, the initial strength of 
that specimen can be computed directly from 
Equation 10, knowing the stressing rate, 0. Con- 
versely, if the initial strength of a specimen is 
known, the fracture strength in any constant 
loading-rate test can be computed from Equation 
10 by numerical methods. 

The logarithmic form of Equation 10 is: 

lnS~ = [ 1 / ( N + I ) ] l n ( B 0 ) +  [1 / (N +I ) ]  

in (Si N-2 -- S~V-2). (11) 

Analysis of Equation 11 shows that a plot of 
In S e against In O would have a slope of 1/(N+ 1) 
at low values of 6 and a slope of zero at high 
values of 6. This is consistent with the subcritical 
crack-growth model in which, at very high loading 
rates, there is not enough time for subcritical crack 
growth to occur and the initial and final strengths 
are essentially equal. 

There are three methods for evaluating the con- 
stant B, based on: 

(i) crack-growth measurements where N is the 
slope and A is the intercept of the V - K  plot; 

(ii) the rate-of-loading effect in which the first 
two terms of Equation 11 are plotted giving both 
the slope N and, from the intercept, B; 

(iii) a logarithmic plot of the applied stress 
against the time to failure. 
The second method was used in the present experi- 
ments and it is explained in detail in the Appendix. 

This paper describes an attempt to explain the 
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Figure 1 A typical loading curve and acous- 
tic emission plot. The specimens were 
oriented so as to promote cracking in the 
LT system, i.e. on a plane perpendicular to 
the longitudinal axis and in a direction 
parallel to the tangential axis. In fact, crack- 
ing was a complex mixture of the LT and 
TL systems. 

rate-of-loading effect in wood by the application 
of  Equation 10. The ability of  this fracture mech- 
anics approach to account for existing data is 
tested and some new experimental results are 
described. 

2. Experimental procedure 
2.1. Material 
Six hundred and forty board feet of  a select com- 
mercial grade of  Douglas Fir were purchased in 
the form of 3 5 m m x 2 1 6 m m x 4 . 8 8 m  boards 
(las in. x 8�89 in. x 16 ft). The boards were carefully 
selected by us at the mill for straightness of grain 
and freedom from defects. They were then sawn 
and planed to produce specimens that were 
35mm x 64ram x 914ram (1~ in. x 2�89 in. x 36 in.) 
The finished specimens were placed in a controlled 
humidity room and were conditioned for 6 months 
at an ultimate moisture content of  about 11%. 
Specimens were taken from the controlled humid- 
ity room at the time that they were to be tested 
and their moisture content was preserved by keep- 
ing them in a heavy plastic bag until they were 
placed in the testing machine. 

2.2. T h e  t e s t  m e t h o d  
The specimens were tested in four-point bending 
in the LT orientation [12], with the loading 
points 279 mm (11 in.) apart, as shown in Fig. 1. 
A servo-hydraulic machine was used under load 
control. In this method of  testing, the machine 
attempts to increase the load on the specimen 
at a constant rate. As the specimen begins to fail, 
it becomes more compliant and the machine 

increases its deflection speed to maintain a con- 
stant loading rate. A typical loading curve is shown 
in Fig. 1. The failure stress was calculated from 
the highest load supported by the specimen. 

Specimens were tested in the "planed" con- 
dition or in the "notched" condition. Notched 
specimens had a thin saw cut on the tension side 
midway between the central loading points as 
shown in Fig. 1. The stress at failure, Se, was 
calculated from the simple beam formula (Sf = 
3 PL/bw 2 , where P is the load, L the span, b the 
thickness and w the depth). 

2.3. Measurement of fracture toughness 
The standard equation for fracture toughness of 
an edge-notched beam in four-point bending is 

6 Y x/a PL 
Kc - 2bW2 (12) 

where Y is a function of the ratio of  crack length, 
a, to beam depth, W. Equation 12 applies to 
materials with isotropic elastic constants and must 
be modified for wood. A basic equation of  frac- 
ture mechanics (as applied to orthotropic mate- 
rial), which gives the relationship between the rate 
of  release of  stored elastic energy and the  critical 
stress intensity factor is [10, 11] : 

Pc = (P2e/2b) (dc/da) = K2e/E ' (13) 

where Pc is the critical energy release rate, Pc 
is the failure load, b the specimen thickness and c 
the compliance. E '  is the effective elastic modulus 
which can be computed from the relation 
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Figure 2 Plot of cumulative failure probability against strength for notched (38 ram) and unnotched specimens. 

t, .1t 
(14) 

where A U are the anisotropic elastic compliances. 
Thus, the fracture toughness of notched speci- 

mens may be determined from Equation 13 if the 
compliance is known as a function of crack 
length and if the anisotropic elastic constants 
are known. A compliance plot for the present 
tests  was determined by measuring the speci- 
men deflection at the notch position for notches 
of different depths. The value of the anisotropic 
elastic constant published by Schniewind and 
Pozniak [12], E '  = 1.19 x 106 psi*, was then 
used to obtain the fracture toughness, Ke, from 
Equation 13. 

3. Results 
3.1. Strength 
Fig. 2 shows the distribution of failure strengths 
for notched (38 mm deep) and unnotched speci- 
mens. The notched specimens were tested at four 
different stressing rates ranging from 2.6 x 10 -3 

"103 psi -= 6.89 N m-L 

MPa sec-l (0.38 psi sec-1) to 68.9 MPa sec-I 
(104 psi sec-1). The unnotched specimens were 
tested at six different stressing rates ranging from 
2 .6 x 1 0  -3MPasec -1 to 529MPasec -1. The 
fastest stressing rate (529 MPasec -1) was not 
feasible for the notched specimens because of the 
large deflections involved. Apart from the expec- 
ted difference in strength between the notched 
and unnotched specimens, Fig. 2 reveals a rate-of- 
loading effect only in the unnotched specimens. 

The mean values of strength are plotted against 
stressing rate in Fig. 3. The solid lines drawn 
through the data were calculated from Equation 
10. The value of B for this equation was obtained 
by a method described in detail in the Appendix. 
The apparent slope of the V - K  plot, as obtained 
from the slope of the data for unnotched speci- 
mens in Fig. 3, was 59, which is experimentally 
indistinguishable from the earlier values (62 and 
65) measured for cracks parallel to the grain [1,2].  

The broken lines in Fig. 3 are the regression 
lines for the 95th and 5th percentiles of Spencer's 
[6] dimension lumber. Thus, the mean strength 
of the unnotched specimens tested in the present 
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TABLE I Values ofK e for Douglas Fir in the LT mode 
of crack propagation 

Notch depth Stressing rate K e 
(mm) (MPa see-I ) (MPa m 1/2) 

12.7 0.689 5.1 
38 2.6 X 10-3 3.6 
38 6.89 • 10-2 4.7 
38 0.689 4.7 
38 68.9 4.4 

average ~" 

*Calculated from Equation 13 using the compliance 
method. 
"}'The lowest value (at the slowest rate) was excluded from 
the average because of likely slow crack growth during 
the test. 

experiments was slightly higher than the 95th 
percentile of  Spencer's boards. When notched half- 
way through, the present specimens had a mean 
strength about the same as Spencer's 5th per- 
centile. Furthermore, just as Spencer observed, 
the rate-of-loading effect was readily apparent for 
the stronger specimens but appeared to be absent 
for the weaker ones. 

Fig. 4 shows the effect o f  notch depth on 
strength at a constant stressing rate (0.689 MPa 
sec-X, 100 psi sec -~). The two notch depths were 
0.2 and 0.5 times the beam depth (12.7 mm and 
38 mm). The specimens having a small notch had 
a mean strength about the same as Spencer's 50th 
percentile. 

3 .2 .  F r a c t u r e  t o u g h n e s s  
The values of  fracture toughness obtained from 
the compliance-plot method are shown in Table I. 
Each value is the average of  twenty-four tests. The 
low value (3.6 MPa m 1/2) obtained at a slow load- 
ing rate was not included when computing the 
average because it was thought that slow crack 
growth probably influenced the result. 

It is possible to calculate the apparent flaw size 

TABLE II Apparent flaw size* in unnotched specimens. 
Computed from Equation 1, with Y = 2 and K e = 4.7 
MPa m m . 

Stressing rate Average strength Apparent flaw size* 
(MPa sec-l ) (MPa) (mm) 

2.6 X 10-3 79.48 1.7 
1.2 • 10-2 85.59 1.5 
0.689 94.03 1.4 

68.9 98.30 1.1 
529 103.74 1.0 

*If the flaws were notches, this would be their depth. 

in unnotched specimens by using the measured 
toughness and the fracture strength, according 
to Equation 1. The value of  the constant, Y, in 
this equation is approximately 2.0 [13] for very 
small flaws. The calculated values of  apparent flaw 
size are listed in Table II. 

3.3. The morphology of fracture 
The geometry assumed in the analysis of these 
experiments was quite simple. In the notched 
specimens, notches were placed in the LT orien- 
tation and loads were applied in order to pro- 
mote cracking in the Same orientation. Similarly, 
it was assumed that failure of  the unnotched 
specimens began at small flaws on the terrsion side 
of  the beam and grew in the LT orientation. The 
actual experience, however, was much more com- 
plex. 

Often there were numerous cracks that grew 
parallel to the axis of  the beam, i.e. in the TL 
orientation [12]. These cracks would link up at 
random across the grain so that the crack followed 
a very tortuous path. Thus, much of  the sub- 
critical crack growth was parallel rather than per- 
pendicular to the grain. 

Careful observations of  the initiation of  frac- 
ture, revealed that fracture always started on the 
tension side of  the beam. After considerable 
cracking parallel and perpendicular to the grain, 
the compliance was so reduced, that buckling 
occurred under the inner loading points. Buckling 
further reduced the compliance so that the machine 
was no longer able to increase the load and failure 
by stiffness collapse followed. Thus, even the 
definition of  failure is difficult in the case of  wood. 
The initiation of  failure as shown by the acoustic 
emission data in Fig. I occurs at a much lowerload 
than ultimate collapse. For design purposes it is 
likely that crack initiation is a safer failure criterion 
than collapse, but in the present experiments, 
collapse was more easily measured. 

The details of  the fracture process are relevant 
to the validity o f  the fracture-mechanics analysis 
used in the present paper. However, they are so 
complex that considerable work remains to be 
completed. Each fractured beam has been photo- 
graphed and the relation between strength and 
fracture morphology is being examined. These 
results will be described in a subsequent paper. 

4. Discussion 
This paper describes an attempt to understand the 
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kinetics of wood fracture. The approach was to 
measure the rate-of-loading effect in notched and 
unnotched specimens and to see whether the 
results could be adequately explained by a fracture 
mechanics model. Clearly, there are some diffi- 

culties in applying the simple model, assuming 
opening-mode fracture, to the complex, possibly 
mixed-mode fracture of wood. Nevertheless, the 
agreement between theory and experiment, shown 
by Fig. 3, is very encouraging. It is, of course, no 
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surprise that the calculated curve fits the data for 
unnotched specimens so well, since the slope and 
position of the line are obtained from those data. 
However, having extracted the fracture-mechanics 
parameters N and B from the data for strong speci- 
mens, the theory correctly predicts the behaviour 
of notched specimens (Fig. 3) and dimension lum- 
ber as shown in Fig. 5. Thus, the present work 
confirms Spencer's result [6] by showing that 
weak specimens appear to have an attenuated rate- 
0f-loading effect and it further shows that the frac- 
ture mechanics theory predicts the observed effect. 
Furthermore, the theory provides the following 
relatively simple explanation: There are two 
regions of stressing-rate behaviour, the high-rate 
region where strength is independent of rate, and 
the low-rate region where strength is influenced 
by subcritical crack growth. The boundary between 
these two regions shifts to lower stressing rates as 
the initial strength decxeases, as shown in Fig. 6. 
The physical reason for this shift in the boundary 
is simply that weaker specimens, having larger 
cracks, are less influenced by a small amount of 
subcritical crack growth. This is illustrated quite 
clearly by the data in Table II. If the flaw size at 
the highest loading rate is taken as the initial 
flaw size (1.0mm), then subcritical growth of 

0.7 mm is sufficient to reduce the strength to the 
value measured at the slowest loading rate. The 
same amount of subcritical growth in a specimen 
already having a notch or flaw 38 mm deep would 
have very little effect on the strength. 

The second factor giving the appearance of an 
attenuated rate-of-loading effect for weak speci- 
mens is just the logarithmic relation between frac- 
ture strength and stressing rate as expressed by 
Equation 11. When the strength is plotted linearly 
as in Figs 3, 5 and 6, the slope decreases as the 
initial strength decreases. When plotted on loga- 
rithmic axes, the same data can be equally well 
represented by a set of parallel lines having a slope 
of 1 / (N+ 1). Thus, the difference between the 
initial strength and the strength at a very slow 
loading rate, 6.89 x 10 -s MPa sec -1 (0.01 psi 
sec -1 ), is only 3.4 MPa (495 psi) for the 5th per- 
centite of specimens, while it is 23.1 MPa (3357 
psi) for the 95th percentile. The experimental 
precision is the same for both samples and it is 
therefore much easier to detect the difference for 
the strong specimens. This is not to say that the 
calculated difference is proportionately the same 
for weak and strong specimens. It is 18% for the 
weak ones and about 24% for the Strong ones. 

According to the fracture-mechanics theory, 
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the duration of load-effect is another manifesta- 
tion of subcritical crack growth. This effect is 
observed when a constant stress is applied to the 
specimens and the time to failure is measured. If 
Equation 4 is integrated at constant stress, we 
obtain the result: 

t+ = BCra 2 [ ( ~ J S i )  2-N - -  11 (15) 

where tf is the time to failure. Equation 15 is 
plotted in Fig. 7, showing that, like the rate-of- 
loading effect, the duration-of-load effect appears 

IO0 

EL 8 0 -  

U) 

i-- 
m 

Q 

ul 4 0  "3 = - - ~  

2 C -  

0 , , I 
0 

Si = 1 3 7  M P a  

! 

82'7 

5 5  

27'5 

~,,, I 
3 4 
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Douglas Fir as a function o f  the 
initial strength. The broken line 
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boundary between the stress- 
rate insensitive region (high 
stressing rates) and the sub- 
critical crack-growth region as 
described by Equation A6. 

to diminish as the initial strength decreases. On a 
logarithmic plot, the lines shown in Fig. 7 would 
be straight and parallel with a slope of approxi- 
m a t e l y -  1/N. 

The "Adjustment of Working Stresses for 
Various Durations of Load" as published by the 
US Forest Products Laboratory [5] is also shown 
in Fig. 7. It has a significantly steeper slope than 
the results obtained from the present experiments, 
but for weak specimens the reduction in strength 
for a 50-year life is virtually the same. Since it is 
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Figure 7 The duration-of-load 
effect as a function of  initial 
strength, calculated from 
Equation 15. Two examples o f  
the "Adjustment of  Working 
Stresses for Various Durations 
of Load",  US Forest Products 
Laboratory, are shown 
broken lines. 



the usual practice to assign working stresses on the 
basis of the strength at the 5th percentile, there 
would appear to be no serious conflict between 
the present results and the normal design pro- 
cedure. Thus, these results appear to support both 
the practice of  adjusting for the duration-of-load 
effect and the approximate magnitude of the 
adjustment. However, the curves of Fig. 7 were 
computed from average values of the parameters 
N and B = f (Ke ) .  The uncertainty in these para- 
meters is quite large as can be judged from the 
dispersion of the data in Fig. 2. The resulting 
uncertainty in predicting the time to failure has 
been shown to render plots such as Fig. 7 rela- 
tively useless. Fortunately, two recent papers [14, 
15] have described statistical methods for reducing 
the uncertainty in failure prediction. The methods 
are based on the same fracture-mechanics prin- 
ciples described in this paper and should be 
readily applicable to wood. 
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Appendix: Method of calculating the 
fracture strength Sf, knowing 
the initial strength Si, and the 
stressing rate 0 

The constant B in Equation 10 can be evaluated 
from a logarithmic plot of S~ against 0 as shown 
in Fig. 8. If all of the data appear to lie on a 
straight line, as in the present case, it is assumed 
that a e lies above the stressing rate range of the 
tests. B is then obtained from the relation 

logB = ( N +  1) logSfo - - ( N - - 2 )  logSi. (A1) 

In the present experiments the value obtained was 
B = l . 6 9 2 x 1 0 7  . 

Knowing B, it was then possible to solve Equa- 
tion 10 for a given initial strength and d. This was 
done by rearranging the equation into the follow- 
ing form: 

X N+I +f iX  N - 2 -  1 -- 0 (A2) 

where 

X = ( S f / b S i )  N+I (A3) 

b = [ B O I S e ]  ' / ( N + ' )  (A4) 
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Figure 8 Method of calculating N and B from stressing- 
rate data. 

/3 = b N-2 . (Ah) 

Equation A2 was then solved by an algorithm 
employing Newton's method of roots. 

The value of fie can, in principle be obtained 
by drawing tangents to the two limbs of the stress- 
ing rate curve as shown in Fig. 8. A more accurate 
way is to differentiate Equation 10 with respect 
to d and to solve the resulting differential equa- 
tion at Sf = Si. The expression for the critical 
stressing rate is then: 

be = S?/B. (A6) 

This function is plotted in Fig. 6. 
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